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Abstract: Aiming at the limitations of traditional bridge detection in time and space coverage, data 
consistency and response speed, this paper proposes a method of municipal bridge health 
monitoring and risk assessment based on multi-source data fusion. Firstly, a heterogeneous sensor 
network covering strain, deflection, temperature and dynamic response is constructed, and the 
dynamic correlation equation of strain-temperature-deflection is established by introducing 
Cauchy-hoff plate theory, so as to realize the mechanism-level fusion of local measurement to the 
whole deformation field. Then, the stiffness reduction coefficient is taken as the performance state 
parameter, and Bayesian updating is used to fuse the prior design information and real-time 
monitoring data, which significantly reduces the cognitive uncertainty under small samples. Finally, 
the time-varying failure probability is calculated by Monte Carlo simulation, and the risk evolution 
curve is drawn to realize the transition from post-disposal to early warning. The example of 30 m 
prestressed concrete simply supported beam bridge shows that the error between strain inversion 
deflection and measured peak value is less than 5%, and the stiffness uncertainty is reduced by 70%. 
The system can issue intermediate warning four months before the risk accelerates, which provides 
reliable decision support for the accurate and intelligent management and maintenance of municipal 
bridges. 

1. Introduction 
Faced with the increase of traffic load and extreme weather events, the traditional manual 

detection method faces great challenges in time and space, data consistency and response speed. 
With the cost reduction of sensors in the Internet of Things and the development of 5G network, it 
provides technical support for bridge structural health monitoring, and promotes the progress from 
single vibration monitoring to multi-modal data monitoring, while the data analysis accuracy based 
on deep learning has been significantly improved [1-2]. However, the current research is still 
insufficient in the depth of heterogeneous data fusion and dynamic risk assessment, and further 
exploration is needed to achieve more accurate bridge operation and maintenance management [3]. 
This transformation not only helps to improve the detection efficiency and accuracy, but also 
effectively reduces the risk of bridge accidents. This paper focuses on the safety management and 
control requirements of municipal bridges in the whole life cycle, and establishes the dynamic 
correlation equation of strain-temperature-deflection through the theory of Cauchy-Hough plate to 
realize the internal mechanism fusion of multi-source data. Bayesian updating and Monte Carlo 
simulation are combined to solve the problem of uncertainty quantification under small sample data. 

2. Construction of municipal bridge health monitoring system 
In view of the structural characteristics and common diseases of medium and small span beam 

bridges, it is necessary to construct a multi-parameter sensor network to realize comprehensive state 
perception. Fiber Bragg Gratings or resistance strain gauges are arranged near the middle and 
quarter points of the main girder span and the supports to monitor the stress changes under the 
vehicle load in real time [4]; Monitoring the deflection of the beam and the settlement of the pier by 
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connecting tube static level or high-precision GNSS equipment; The digital temperature sensor is 
used to collect the temperature field and environmental temperature difference inside and outside 
the structure; Deploy low-frequency acceleration sensors to obtain structural dynamic response and 
identify modal parameters such as frequency and vibration mode; At the same time, supplemented 
by high-definition video monitoring, the traffic conditions, overload behavior and apparent damage 
of the bridge deck are recorded [5-6]. 

In order to solve the problem of "data island" of heterogeneous data (strain, temperature and 
deflection), the theory of Cauchy-hoff plate is introduced to establish its internal physical 
mechanism correlation [7]. For the common plate beam structure in municipal bridges, the dynamic 
relationship between strain ε  and deflection w  can be expressed as: 

( ) ( )tyxwztyx ,,,, 2∇−=ε (1) 
Where is the strain value of the measuring point at ( )tyx ,,ε  time t , the coordinate ( )yx,  of 

the middle plane of the plate and the distance z  from the middle plane. z  is the vertical distance 
between the sensor and the middle plane of the structure. 2∇  is Laplace operator, representing 
curvature. 
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( )tyxw ,,  is the time t  and the deflection of the plate at coordinate ( )yx, . 
Through the ε  measured by distributed strain sensor array, the overall deformation field w  of 

the structure can be deduced by using the above formula, which is cross-verified and calibrated with 
the actual value measured by deflection sensor. At the same time, the temperature sensor data ( )tT  
is introduced to separate the thermal stress/strain ( )tTε  caused by temperature change and the 
stress/strain ( )tLε caused by load: 

( ) ( ) ( ) ( ) ( )tTtttt LTL ∆+=+= αεεεε (3) 
Where α  is that coefficient of thermal expansion of the material. 

3. Risk assessment model based on multi-source data 
3.1 Performance state evaluation and Bayesian update 

Define the performance state parameter θ  of the bridge. The traditional method relies on a 
small amount of detection data to estimate θ , which has great uncertainty. In this study, Bayesian 
updating method is used to combine prior knowledge (design value, historical detection data) with 
post-verification data (real-time monitoring data) to dynamically correct the cognition of θ  [8]. 

Let the prior distribution be ( )θP , and the likelihood function ( )θDP can be obtained by 
monitoring the data D  (such as deflection exceeding the standard times and vibration frequency 
deviation value). The updated posterior distribution is: 

( ) ( ) ( )
( )DP

PDP
DP

θθ
θ =

(4) 

Where ( )θP  is the prior probability distribution of the parameter θ . ( )θDP is the likelihood 
probability of observing the monitoring data D  under the given parameter θ . ( )DP  is evidence. 
( )DP θ  is the updated posterior probability distribution, which represents the latest and most 

accurate probability estimation of parameter θ after obtaining new data D . This method 
effectively solves the problem of high evaluation uncertainty under small sample data, and makes 
the state evaluation approach the real situation with the accumulation of monitoring data. 

3.2 Dynamic risk probability calculation 
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Risk ( R ) is the product of the probability of occurrence ( fP ) and the consequence (C ) of the 

event. This study focuses on the dynamic calculation of structural failure probability fP . 
Define the limit state function: 

SRZ −= (5) 
In the formula, R  is the structural resistance, which is a variable that degrades with time and is 

related to the state parameter θ . S  is the load effect, which is obtained from the monitoring data. 
When 0<Z , the structure fails. 

The implementation of Monte Carlo simulation, the process is as follows: 
(1) A large number of ( N ) θ  samples are randomly selected from the updated posterior 

distribution ( )DP θ . 

(2) For each θ  sample, calculate its corresponding resistance R . 
(3) At the same time, samples are randomly selected from the probability distribution of load 

effect S  obtained from monitoring data statistics. 
(4) Calculate the iii SRZ −=  of each sample. 
(5) Count the number fN  of 0<iZ  in N  sampling. 
(6) Calculate the failure probability at the current moment: 

N
N

P f
f ≈ (6) 

The dynamic risk value CPR f ×=  can be obtained by combining the failure probability fP  
and the consequence gradeC  (pre-defined according to the importance of bridges, traffic volume 
and other factors). The risk value can be output with time series, forming a risk evolution curve and 
realizing early warning. 

4. Case verification and result analysis 
A prestressed concrete simply supported beam bridge with a span of 30m in a city is selected as 

the engineering background, and the monitoring system including FBG strain sensor, static level, 
accelerometer and temperature sensor is deployed for data collection and analysis for one year. 

Firstly, the monitoring data of a heavy vehicle crossing the bridge on a certain day are analyzed. 
Figure 1 shows the comparison between the mid-span deflection time-history curve calculated by 
strain data inversion and the deflection time-history curve measured by static level. The two curves 
are highly consistent, and the peak error is less than 5%, which effectively verifies the correctness 
of the strain-deflection fusion model based on Cauchy-Hough plate theory. The model realizes the 
perceptual expansion from local strain to global deformation, and can be used as a reliable 
redundant backup when the deflection sensor fails. 

 

Figure 1 Contrast diagram of strain inversion deflection and measured deflection 

 
The structural stiffness reduction coefficient θ  is taken as the performance state parameter. The 
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initial prior distribution is assumed to be a normal distribution ( )215.0,0.1N  (that is, it is 
considered that the stiffness is most likely not degraded, but there is great uncertainty). By fusing 
the monitoring data of vibration frequency and deflection for one year, θ  is updated by Bayesian 
method. 

Table 1 Comparison of probability distribution of stiffness reduction coefficient θ  before and after 
Bayesian updating 

Distribution pattern Mean standard deviation 
Prior distribution 1.00 0.150 

Posterior distributions 0.93 0.045 
 

As can be seen from Table 1 above, after the update, the average value of θ  decreased from 
1.00 to 0.93, indicating that the structural stiffness has deteriorated by about 7%. More importantly, 
the standard deviation is greatly reduced from 0.150 to 0.045, which shows that the cognitive 
uncertainty of structural state is significantly reduced and the confidence of evaluation results is 
greatly improved by fusing continuous monitoring data. 

Based on the updated posterior distribution, Monte Carlo simulation (sampling times 
510=N ) 

is used to calculate the annual failure probability fP  in the next year, and the results are compared 
with those of the traditional method (only based on one test data evaluation). As can be seen from 
Figure 2 above, the traditional method is based on single point detection and evaluation, and the 

obtained fP  is a static value (dotted line in the figure), which cannot reflect the time-varying 

degradation law of structural performance. The dynamically updated fP  (solid line in the figure) 
of this method clearly shows the process of risk accumulation over time. In the first eight months, 

the growth of fP  was slow; After that, with the acceleration of stiffness degradation, the risk 
began to climb nonlinearly. At the end of the 12th month, the system issued an intermediate warning 
based on the dynamic rapid growth, prompting that detailed inspection and maintenance should be 
arranged. However, the traditional static evaluation method failed to capture this risk acceleration 
point. 

 

Figure 2 Trend chart of annual failure probability fP  changing with time 
Case verification shows that the multi-source data fusion monitoring system and dynamic risk 

assessment model constructed in this paper can not only more accurately perceive the structural 
state and reduce the cognitive uncertainty, but also accurately grasp the risk evolution law, realize 

707



the transformation from "post-processing" to "pre-warning", and provide effective decision support 
for the accurate and intelligent management and maintenance of municipal bridges. 

5. Conclusion 
In this paper, a method of municipal bridge health monitoring and risk assessment based on 

multi-source data fusion is proposed. By constructing a multi-parameter sensor network, 
comprehensive state perception is realized, and the dynamic correlation equation of 
strain-temperature-deflection is established by using the theory of Cauchy-Hough plate, which 
solves the problem of insufficient depth of heterogeneous data fusion. Combining Bayesian 
updating and Monte Carlo simulation, the uncertainty under small sample data is effectively 
quantified, and the accuracy and confidence of structural state evaluation are significantly improved. 
The research results show that this method can accurately sense the state of bridge structure, 
accurately separate thermal stress from load stress, and calculate the failure probability in real time 
through the dynamic risk assessment model to form a risk evolution curve, thus realizing the early 
warning function. The case study shows that compared with the traditional static evaluation method, 
this method can more clearly show the risk accumulation process with time, timely capture the 
time-varying degradation law of structural performance, and issue an intermediate warning at the 
risk acceleration point, which provides effective decision support for the accurate and intelligent 
management and maintenance of municipal bridges. 
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